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The stability of the flow induced by an impulsively started inner cylinder in 
a Couette flow apparatus is investigated by using a linear stability analysis. 
Two approaches are taken; one is the treatment as an initial-value problem in 
which the time evolution of the initially distributed small random perturbations 
of given wavelength is monitored by numerically integrating the unsteady 
perturbation equations. The other is the quasi-steady approach, in which the 
stability of the instantaneous velocity prome of the basic flow is analyzed. With 
the quasi-steady approach, two stability criteria are investigated; one is the 
standard zero perturbation growth rate definition of stability, and the obher is 
the momentary stability criterion in which the evolution of the basic flow velocity 
field is partially taken into account. In  the initial-value problem approach, 
the predicted critical wavelengths agree remarkably well with those found 
experimentally. The kinetic energy of the perturbations decreases initially, 
reaches a minimum, then grows exponentially. By comparing with the ex- 
perimental results, it may be concluded that when the perturbation kinebic 
energy has grown a thousand-fold, the secondary flow pattern is clearly visible. 
The time of intrinsic instability (the time at  which perturbations fbst tend to 
grow) is about 2 of the time required for a thousandfold increase, when the 
instability disks are clearly observable. With the quasi-steady approach, the 
critical times for marginal stability are comparable to those found using the 
initial-value problem approach. The predicted critical wavelengths, however, 
are about 16 to 2 times larger than those observed. Both of these points are 
in agreement with the findings of Mahler, Schechter & Wissler (1968) treating 
the stability of a fluid layer with time-dependent density gradients. The zero 
growth rate and the momentary stability criteria give approximately the same 
results. 

1. Introduction 
The results of an experimental investigation of the stability of time-dependent 

rotational Couette flow induced by an impulsively started inner cylinder have 
been presented by Kirchner & Chen (1970, hereafter referred to as I). The initial 
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laminar flow evolves into a secondary flow pattern which consists of a series of 
Taylor-type vortices spaced approximately evenly along the inner cylinder. The 
average spacing between the vortices and the critical time for the first appearance 
of the instabilities decrease as the rotational speed of the inner cylinder in- 
creases. In  this paper, we present the results of a stability analysis of this flow 
phenomenon. 

The stability analysis for the time-independent basic flows is conceptually 
straightforward. One introduces into the flow field perturbations of small 
amplitude but of different wavelengths. These perturbations may decay or grow 
depending on the properties of the basic flow, and the rate of growth or decay is 
a function of the wave-number. For a given flow, there are generally two par- 
ticular waves which are neutrally stable thus delineating the stable and unstable 
regions; a marginal stability curve may be constructed. This method has been 
eminently successful in the stability analysis of the rotating Couette flows, 
laminar boundary-layer flows and the BBnard convection problem to name a few. 
In  a basically time-dependent flow, this concept cannot be carried over since 
the perturbations are continuously interacting with the basic flow which is itself 
evolving in time. 

If one is certain that the growth of the perturbations once started will be 
much faster than the evolution of the basic flow, then a quasi-steady approach 
can be taken. With this approach the instantaneous velocity profile is analyzed 
for stability in much the same way as for a steady-state problem. Since the 
history of the flow is ignored, one is never sure a priori of the applicability of 
this method. Shen (1961) has advanced the idea of momentary stability in which 
the time-dependent feature of the basio flow is taken into account. His idea is 
that an accelerating basic flow is classified as momentarily unstable only when the 
growthrate of the perturbations exceeds that of the basic flow. The attractiveness 
of the quasi-steady approach is that the linear perturbation equations reduce 
to an eigenvalue problem (even with the momentary stability criterion), whose 
solution yields both the critical wavelength and critical time without introducing 
arbitrary initial conditions. Morton (1957), Lick (1965) and Currie (1967) have 
used this approach in treating BBnard problems with time-dependent tempera- 
ture profile. Conrad & Criminale (1965) have taken the quasi-steady approach 
in a non-linear formulation of the time-dependent basic flow problems. 
Using the variational technique of Serrin (1959), a set of linear equations 
was obtained. They have treated the problem of rotating Couette flow with 
sinusoidal modulation of the inner cylinder, which was investigated experi- 
mentally by Donnelly (1964), using the concept of momentary stability. Their 
results were conservative since only the sufficient condition for stability is 
determined. 

Another way to approach the problem is to solve the linear stability equation 
as an initial-value problem. Perturbations of small magnitude and of given wave- 
lengths are initially distributed in the flow field, and their progress in time is 
obtained by integration of the perturbation equations. The growth or decay of 
the perturbation kinetic energy would indicate whether the flow is unstable or 
stable. With the advent of high-speed computers, this method has become 
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increasingly popular. Meister (1963) has used this approach together with the 
Galerkin method to examine a time-dependent Couette flow with narrow gap. 
The steady Couette flow established in an annulus is disturbed by a sudden 
increase of rotational speed of the inner cylinder. His results show that as the 
rotational speed of the inner cylinder is increased beyond a certain critical 
value, bhe kinetic energy of the perturbations grows without limit. Later, 
Meister & Munzner (1966) have used the same approachs to treat problems of 
narrow-gap Couette flow with sinusoidal modulation. Their results agree with the 
experimental results of Donnelly (1964). More recently, Thompson (1968) has 
used numerical integration to study the stability of flow induced by an im- 
pulsively started cylinder in a large container to compare with experimental 
results of Chen & Christensen (1967). His results are discussed in $ 2.3. Foster 
(1965, 1969) and Mahler, Schechter & Wissler (1968) have used this approach to 
examine the stability of fluid layers with time-dependent density gradients. 
By comparing the results of quasi-steady analysis to those of the initial-value 
problem approach, Mahler et al. found that the critical times for intrinsic 
instability (the time when the perturbations fwst tend to grow) predicted by 
these two methods are in reasonable agreement. The critical wave-number of 
that wave which tends to grow first, as predicted by the quasi-steady method, 
is about half of that predicted by the initial-value problem. 

In this paper, starting with the linear stability equation, we have performed 
stability analysis both with the initial-value problem approach and the quasi- 
steady approach on the problem of an impulsively started inner cylinder in a 
Couette flow apparatus. These two methods of solution are presented in $$ 2 and 3, 
and a discussion of the results obtained is presented in $4.  We have found that 
the critical wavelength predicted by the initial-value problem agrees well with 
the experimental results of I, and that when the kinetic energy of the perturba- 
tions has grown a thousandfold, the secondary flow pattern is clearly observable. 
We have reached the same general conclusion about the comparison between 
the initial-value problem and the quasi-steady analysis as that reached by 
Mahler et al. The zero growth rate and the momentary stability criteria gave 
approximately the same results. 

2. Initial-value problem 
2.1. Basic equations 

Consider two concentric cylinders of radii R, and R, with R, < R,. Let the axis 
of the inner cylinder be along the z‘ axis of a cylindrical co-ordinate system 
(r’, 0 , ~ ‘ ) .  The outer cylinder is kept stationary; the inner cylinder is impulsively 
started at t = 0 and maintained at a constant surface speed V;. The time- 
dependent velocity field within the annulus is denoted by V‘(r‘, t ) .  Assuming 
axisymmetric perturbations periodic in z’ in the velocity components and in 
the pressure, 

u’(r’, t )  cos ad, v’(r’, t )  cos ax’, 

w’(r‘, t )  sinaz’, p’(r’, t )  cosax’, 
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the linearized equations of motion become 
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when and p‘ are eliminated. In  the above equations 

D’ = a/ari, D‘* = D’ + l / r f ,  

and v is the kinematic viscosity. The boundary conditions, after using the con- 
tinuity equation are 

u’ = v’ = Df*u’ = 0, a t  r f  = R, and R,. (3) 

With R, as the reference length, Vb the reference velocity, (1) and (2) assume 
the following non-dimensional form 

[DD* - K, - a/ar] (DD* - K,) u = 2Re K2Vv/r, 
[DD* - K, - a / a ~ ]  v = Re uD* V ,  

(4) 
( 5 )  

in which the non-dimensional variables are now unprimed. The non-dimensional 
time and wave-number are defined as 

r = vt/R!, K = aR1, 

and the Reynolds number is Re = R,Vb/v. The boundary conditions become 

u = v = D*u = 0 at  r = 1 and R(=RJR,).  (6) 

(7) 

The basic velocity field is governed by 

a V / ~ T  = DD* V ,  

V(1,  0 )  = 1; V(r ,  0) = 0 for 1 < r < R, 

with the initial and boundary conditions 

V(1,  T )  = 1, V ( R ,  T )  = 0, ( 8 b )  

which may be solved by transform methods as is shown in 3 3. However, since 
(4) and (5) will be solved by numerical means, we shall integrate (7)  numerically 
also. 

Following Thompson (1968), we introduce $ which is defined as 

$ = (DD* - K,) u. 

a$/& = (DD*- K,) $- 2 R e ~ ~ V v / r ,  

(9) 

(10) 

avpr = ( D D * - K ~ ) v - R ~ u D * V .  (11) 

Equation (4) becomes 

and (5) is rearranged to become 

Equations (71, (10) stnd (11) prescribe the time evaluation of V ,  and v and (9) 
defines $ in terms of u. The velocity components satisfy boundary conditions (6) 
and (8). The boundary conditions on $ may be obtained from (9), 
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The perturbation kinetic energy per wavelength Ep and the basic flow kinetic 
energy per wavelength Eb are defined as follows: 

in which a normalizing constant (np Vhz.R;)/~ is deleted. 

2.2. Computation procedure and difference equations 

The procedure of calculation is to first assume small random values of $ at all 
interior grid points since the boundary values of @ depends on the second de- 
rivative of u, which is not known Q priori. Then (9) is solved for u; the boundary 
values of @ can now be evaluated using (12). V ,  @, and w are then advanced in 
time according to (7), (10) and (1 1). For V and w, the values at interior grid points 
as well as those on the boundary are known. However, $ is only known at all 
interior points. The procedure may now be repeated to obtain values at the next 
time step. 

Let the annular region 1 < r 6 R be divided into J equal intervals, with j = 0 
and J at the boundary points. The subroutine RANDU of the IBM system/360 
Scientific Subroutine Package is used to generate random distribution of $. 
Random numbers are generated between 0 and 1, and these are multiplied by 
loF4 so that the initial disturbances are small. The $-equation (9) is solved by 
the method of successive over-relaxation (Todd 1962). The ( E +  1)th iterate of u 
at grid point j and bhe nth time step is 

w 
= - [ C X , U ~ + ~ , ~  + - (Ar)2 $?I - (w - 1) uz (j  = 1,2,  . . ., J - 1). 

4 
(14) 

where olj = 1 + (Ar)/2r,, 
= 1 - (A?)/2rj, 

A, = 2+(Ar)2(~2+rj-2),  

and w is the relaxation factor. Iterations are terminated when the maximum 
relative error of two successive iterates is within l O W .  For the very first calcula- 
tion, the initial values of u are put at zero; for any subsequent time step, the 
initial values of u are those of the previous time step. The number of iterations 
needed is then reduced by a substantial amount. The optimum relaxation factor 
w for a given grid size is a function of the wave-number K .  For the range of wave- 
numbers encountered, the optimum relaxation factors have been determined by 
numerical experimentation; these range from 1.96 for K = 0.6 linearly decreasing 
to 1-7 at K = 8.5. The number of iterations needed for random distributions of $ 
and initial value of u = 0 ranges from 29 for K = 8 and 113 for K = 1.5 for 
Ar = 2.5 x 

For the parabolic equation, we have chosen the explicit scheme of integration. 
Although an implicit scheme may be less time-consuming because of its in- 
herent numerical stability, the necessity of using an iteration procedure to 

24 F L M  48 
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obtain the boundary values of q9 makes such time saving doubtful. The explicit 
difference equations for V ,  4, and v are quite similar; the equations are presented 
in terms of a general variable Q .  At the grid pointj, the value of Q at the (n  + 1)th 
time step is (Richtmeyer & Morton 1967) 

where 
= K2(Ar)2 Vr,  for Q = V ,  

l$(Q) = 2 R e ~ ~ V ~ v ~ ( A r ) ~ / r ~ ,  for Q = q9, I = - 4Re (Ar) uy[VT+, - YTml + 2(Ar) Vy/rj] ,  for Q = v, 

in which A T / ( A ~ ) ~  < 0.5 to ensure numerical stability. The boundary conditions 
for the velocity components are 

To obtain the boundary conditions on $, we use the fact that the fist de- 
rivative of u is zero a t  the boundary, and u would be symmetric if extended 
beyond the boundary (Thompson 1968). 

The kinetic energy terms Ep and E, (1 3) are obtained by using Simpson's rule. 

2.3. Results and discussion 
All calculations were made for a radius ratio 9 ( = 1/R) of 0.2. Although the data 
given in I were obtained for a radius ratio of 0.1, more recent data of Liu (1971) 
for a radius ratio of 0.2 showed no discernible difference in the critical time when 
the instabilities become observable. This is because even at a radius ratio of 0.2,  
at the time of observable instabilities, the outer cylinder has had no appreciable 
influence on the basic flow velocity distribution. The reduction in computation 
time by halving the gap width is of course considerable. Perturbations are intro- 
duced at  T = 0 when the cylinder is impulsively started. Foster (1965) has shown 
that for the time-dependent BBnard problem if the perturbations are introduced 
a t  a later time, the growth curve of the perturbation kinetic energy is corre- 
spondingly shifted to a later time. We feel that in a physical experiment, dis- 
turbances are most likely to occur a t  the time when the inner cylinder is im- 
pulsively started. Mahler et al. (1968) also introduced the perturbations initialIy 
when treating the time-dependent BQnard problem. In the presentation of results, 
the perturbation kinetic energy is normalized with respect to its initial value 
and is denoted by E = EP/Ep,,=,. 

The number of grid points to be used in the annulus 1 < r < 5 should give 
accurate resulbs with the least amount of computation time. The two-fold 
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objectives are met with J == 160 or Ar = 0-025. This is illustrated in figure 1 in 
which the growth curves of the perturbation kinetic energy at Re = 400 are 
shown for J = 40,80,160 and 320. It is noted that since AT N (Ar)2, the computa- 
tional times increase approximately fourfold for each successive J value used. 

7 

FIGURE 1. Effect of number of grid points ( J  + 1) on the accuracy of results for Re = 400. 

The relative difference in times at the minima of the curves for J = 160 and 
J = 230 is approximately 5 % and the relative errors decrease at times when the 
perturbation energy has attained ten- a hundred- and a thousand-fold growth. 
In  cases of lower Reynolds numbers, since the time involved is longer, the relative 
error decreases accordingly. With J = 160, the results obtained for different 
initial sets of random numbers have a relative error of less than 5 yo for all the 
above mentioned critical times. 

Calculations have been made for Re = 50,100,150,200,300 and 400. The value 
of Ar/(Ar)2 was chosen to be 0.2 for Re >, 150 and 0.4 for Re = 50 and 100. The 
smaller value was chosen for the larger values of Re so that the number of 

24'2 
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iterations needed for each successive time step is not excessive. For each of the 
Reynolds numbers chosen, the growbh of the perturbation kinetic energy is 
calculated for different values of the wave-number K ;  that particular value of K 

which gives the fastest growing perturbation is the critical wave-number. For 
all cases calculated, the growth rate of the perturbation kinetic energy presents 
a very shallow maximum with respect to the wave-number as shown in figure 2 
for Re = 400. The perturbation kinetic energy at r = 0.02 is shown as a function 

r I I 1 

1.390 t- 

i 
E 

1.385 

1.380 I I I I 
7.8 1.9 8.0 8.1 8.2 

K 

FIGURE 2. Determination of the fastest-growing wave, Re = 4 0 0 , ~  = 0.02. 

7 

Re Kwit ZIR, E m  

50 1.45 4.333 0.2215 
100 2.85 2.205 0-0810 
150 4.02 1.562 0.0447 
200 5.10 1.232 0.0292 
300 6.75 0.930 0.0165 
400 7.96 0.789 0.0115 

Critical times to reach 
A 

Em El E2 
0.2580 0.764 1-051 
0-0890 0.213 0.277 
0.0482 0.108 0.139 
0.0312 0.0690 0.0870 
0.0177 0.0380 0.0473 
0.0120 0.0254 0-0313 

7 

E3 

1.344 
0.340 
0.168 
0.105 
0.0566 
0.0372 

TABLE 1. Summary of results of the initial-value problem 

of K ,  and the critical value is 7.96. It has been our experience that after the 
perturbation kinetic energy has increased beyond its original value, i.e. E > 1, 
the growth rates of the different waves stay sensibly constant. This means which- 
ever wave attains the highest rate of growth beyond E = 1, it will remain the 
fastest growing wave. The critical wave-numbers for all cases considered together 
with the non-dimensional wavelength ZIR, = 2 z - 1 ~ ~ ~ ~ ~  are summarized in table 1. 
The non-dimensional wavelength as calculated is compared with those reported 
in I by Liu (1971) in figure 3. The agreement is quite good. 

The evolution of the kinetic energy of the perturbations at the critical wave- 
numbers for all the cases considered are shown in figure 4 together with the 
kinetic energy of the basic flow E,. It should be noted that time scale for Re = 50 
and for Eb is compressed five-fold. Due to viscous damping, the perturbation 
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kinetic energy decreased intially. As energy is being fed from the basic flow to 
the perturbation flow, the initial decay of the perturbation kinetic energy is 
arrested and it reaches a minimum then grows exponentially. The Oime a t  which 
the perturbation kinetic energy is at  the minimum is termed the critical time 
of intrinsic instability. The higher the Reynolds number, the sooner the minimum 
kinetic energy point is reached and the larger the rate of growth. This agrees 
with the observation that the time of first observable perturbations becomes 
increasingly smaller as the Reynolds number is increased. 

4 -  

3 -  

6 
6. 

2 -  

1 -  

0 50 100 150 200 250 300 350 400 

R e  

FIGURE 3. Comparison of experimental and theoretical critical wavelength (initial-value 
problem). 0 ,  data from I, v = 0.1; 0, data from Liu (1971), 7 = 0.2. 

At the minimum point, the perturbation kinetic energy has zero growth. If 
the basic flow field has not been materially altered due to the cumulative effects 
of the perturbations, then a quasi-steady analysis at this particular instant 
should indicate that the basic flow velocity profile is neutrally stable or on the 
verge of instability. Such calculations are carried out in the following section. 
Shen (1961) has advanced the idea of momentary stability in which the ratio of 
kinetic energy of the perturbations to that of the basic flow is examined to de- 
termine whether the flow is stable. From the results presented in figure 4, it is 
seen that the time when the relative kinetic energy E,, = EJE,  reaches a 
minimum is larger than the time for the perturbation kinetic energy to reach a 
minimum due to continuedgrowth of E,. The critical times to reach the minimum 
perturbation kinetic energy Em, the minimum relative kinetic energy Em, and 
a 10n-fold increase of the perturbation kinetic energy En are listed in table 1 
for n = 1, 2, and 3. These are presented graphically in figure 5 together with the 
data from I and from Liu (1971). Generally speaking, when the perturbation 
kinetic energy has increased a thousand-fold the secondary flow pattern has 
become clearly observable. The critical time of intrinsic instability ri which 
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separates the time zones of decay and growth of the perturbations is about 4 of 
the time of observable secondary flows. The computation time required on an 
IBM 360/67 is approximately 1 min for the Re = 400 and about 8-5 min for the 
Re = 50 case. 

I 

E 

0 0.25 0.50 0.75 1.0 1.25 7 for Re = 50 and E, 

FIGURE 4. Growth curves for the perturbation kinetic energy at the critical wave-numbor. 

It is to be noted that the initial kinetic energy of the perturbations is of the 
order 10-10 to 10-8. After attaining a thousand-fold increase, the perturbation 
kinetic energy is of order lo-' to and the perturbation velocity components 
are of order to The corresponding quantities for the basic flow are of 
order 1 at the same time. It is seen that linearized theory is still applicable. 

Thompson (1968) developed this method to treat the problem of an impulsively 
started cylinder in a large container. For his numerical computation, he chose an 
annular region 1 < r < 4. At the outer boundary, the free slip condition is 
applied. A total of 36 grid points were used, which would correspond to J = 48 
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in the present case. Waves of selected wavelengths were calculated for Re = 50, 
100 and 150. His results show that the wave which starts to grow fist may not 
attain the fastest growth rate later. No systematic search was carried out to 
determine the wavelength of the fastest growing wave. In  view of our results, 
the grid size used by Thompson may have been too large for accurate prediction 
of the growth of the perturbation kinetic energy. 

700 

500 

50 

20 
0.01 0.05 0.1 0.5 I .o 

7 

FIGURE 5. Comparison of experimental and theoretical critical times. 0 ,  data from I, 
7 = 0.1; 0, data from Liu (1971), 7 = 0.2; - , initial-value problem, 7 = 0.2; ---, 
quasi-steady analysis, 7 = 0.1, (Em denotes zero growth rate, E,, denotes momentary 
stability). 

For a radius ratio of 0.2, the critical Reynolds number a t  which Taylor in- 
stabilities occur when the basic flow is steady is 22.1 at  a critical wave-number of 
0.815 (Walowit, Tsao & DiPrima 1964). The evolution of the perturbation 
kinetic energy at  the critical state is shown in figure 6. It is seen that the initial 
decay takes place over a long period of time and finally a t  7 = 1-25, it has reached 
the minimum and begins to grow. In  the case of a subcritical Reynolds number 
20, the perturbations decay steadily. 

From these results a clear picture of the flow has emerged. For impulsively 
started circular Couette flow with stationary outer cylinder, if the Reynolds 
number is subcritical ( < 22.1 for Re = 5 ) ,  any perturbation present at the start 
of the experiment decays steadily. When this Reynolds number is increased 
beyond the critical, there exists a critical time ri, prior to which the initial 
perturbation decays and beyond which the perturbation grows steadily. It takes 
time for these perturbations to grow to observable secondary-flow patterns. The 
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lower the supercritical Reynolds number, the longer it takes for the perturbations 
to grow into observable secondary-flow patterns. 

E 
0.1 

0.05 

0.02 
0 0.25 0.50 0.75 1.00 1.25 I .50 

r 

FIGURE 6. Perturbation kinetic energy at  critical and subcritical 
Reynolds numbers, I( = 0.815. 

3. Quasi-steady analysis 
3.1. Method of solution 

For a quasi-steady analysis of the problem, we shall examine the instantaneous 
velocity profile to see whether the disturbances would grow or decay. The velocity 
components u’ and v’ are assumed to be 

u’(r’, t )  = U(r’) ekt, v‘(r’, t )  = @(r‘) ekt.  (18) 

For later application of the Galerkin method, we transform the radial co-ordinate 
r’ into a non-dimensional co-ordinate x where 

r’ lR,+Rl x = 
Rz-Rl 2R2-R1’ 

so that the boundary surfaces are a t  x = 5 4. Substituting (18) and (19) into the 
basic equation (1) and ( 2 )  we obtain the non-dimensional equations 

[DD* - u2 - a] [DO* - a2] u = Ta2Vv(R2 + Rl)/2r’(x), 

[DD* - a2 - a] v = uD* V ,  
(20)  

(211 

in which the operators D and D* now stand for 

D = d / d x  and D* = d/dx+(R,-R,)/r’(x), 

and the other non-dimensional symbols are defined as 

u = (R, - R1) a, = (R2 - R1)’ k / ~ ,  

4(R2- R1)4 V;’ 
(Xi - R:) v2 

T = Taylor number = = 4 ~ : ~ p ( i  -7)3/(1 +r).  
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All velocites u, v and V have been scaled by the Vi.  In  addition, u has been scaled 
by the dimensionless factor v /  V;(R, - R,). 

The time-dependent basic flow velocity distribution may be obtained by 
applying Hankel transforms to (7) together with initial and boundary conditions 
(Sa)  and ( S b )  as done by Tranter (1956). The solution written in terms of x is 

where J1 and Y, are Bessel functions, 

The hi’s are the roots of the equation 

Jl(hl7) Yl(4 - Jl(4 Yl(hl7) = 0. (24) 

Weil, Murty & Rao (1967) have given the first ten roots of the above equation for 
7 = 0.1. From I, it is known that the flow became unstable at  T =  0-1 or less at 
higher Reynolds numbers. In  order to be sure that the basic velocity distribution 
is correctly evaluated, we have calculated the first fifty roots of (24), and these 
are listed in table 2. 

n A n  h71 
1 0.39409 26 9.0789 
2 0.73306 27 9.4287 
3 1-0748 28 9.7777 
4 1.4189 29 10.127 
5 1.7643 30 10-476 
6 2.1107 31 10.824 
7 2.4578 32 11.173 
8 2.8052 33 11.522 
9 3.1530 34 11.871 

10 3.5010 35 12.220 
11 3-8492 36 12-569 
12 4.1975 37 12-918 
13 4.5459 38 13.267 
14 4-8944 39 13.616 
15 5.2430 40 13.965 
16 5.5917 41 14.314 
17 5.9404 42 14.663 
18 6.2891 43 15.012 
19 6.6378 44 15.361 
20 6.9866 45 15.710 
21 7.3355 46 16.059 
22 7.6843 47 16.408 
23 8.0331 48 16.757 
24 8.3820 49 17.106 
25 8.7309 50 17.455 

TABLE 2. First 50 roots of the equation Jl(h/7) Y,(h) -J,(h) Yl(A/v) = 0 , ~  = 0.10 
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The basic velocity distributions have been calculated for r = 0-1,0-5, 1, 10, co, 
and are shown in figure 7. It can be seen that at r = 1 the momentum due to 
the rotation of the inner cylinder has only diffused to about half of the gap width. 

In solving (20) and (21), two stability criteria are examined: the zero-growth 
rate criterion and the momentary stability criterion. In  both cases, the in- 
stantaneous velocity distribution of the basic flow is investigated for stability. 
In the former case, the instantaneous velocity distribution is frozen and it is 

(~‘--l)  + (T’-&) 

2(R, - %) 
2 =  

FIGURE 7. Dimensionless velocity distribution as a function of z for various 
dimensionless times (7 = vt/Ri). All calculations were made at 7 = 0.1. 

determined whether a superimposed perturbation would grow or decay with 
increasing time. With this zero growth rate criteria the perturbations are assumed 
to grow at such a fast rate that the developing basic velocity profile can be 
considered to be fixed. That is, the time scale for the growth of the perturbations 
is assumed to be much shorter than the time scale for the developing basic flow 
profile. The flow is classified as stable or unstable according to the decay or 
growth of the perturbations. When the principle of exchange of stabilities (u = 0) 
is applied to (20) and (21), we obtain the same eigenvalue problem as that for 
a steady flow except for the basic velocity profile V .  Methods used for in- 
vestigating the stability of steady flows are equally applicable in this case. 

The momentary stability criterion advanced by Shen (1961), on the other 
hand, examines the growth of the perturbations with respect to the basic flow 
a t  any given instant. Thus an accelerated basic flow is unstable only when the 
perturbations are growing faster, in some appropriate sense, than the basic 
flow. Thus, a non-zero growth rate of the perturbations (u > 0) is tolerated as 
long as the perturbations are not growing faster than the basic flow. We therefore 
examine the ratio of the instantaneous kinetic energy of the perturbations to 
that of the basic flow. The marginal stability condition is determined by the 
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fact that the growth rate of perturbation kinetic energy is exactly the same as 
that for the basic flow. With this criterion, the growth rate v at the marginally 
stable state is 

The dimensionless growth rate u(7) has been evaluated for 7 = 0.1 and 0 < 7 < 2.0 
as shown in figure 8. As expected, 47) becomes very large at smdl7 due to the 
strong initial acceleration. When the value of 47) appropriate for a particular 
time is used in (20) and (21), we obtain an eigenvalue problem slightly modified 
from the quasi-steady case. 

1000 
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50 
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FIGURE 8. Growth rate 0- as function of time. 

The eigenvalue problem defined by (20) and (21) can be conveniently solved 
by means of the Galerkin method. This method has been successfully used by 
Walowit, Tsao & DiPrima (1964) and Tsao (1964) for the steady wide-gap 
Couet%e flow problem and by Meister (1963) and Meister & Munzner (1966) on 
time-dependent narrow-gap Couette flows. According to their experience, the 
convergence is quite rapid. The eigenfunctions u and v are expanded in complete 
sets of functions which satisfy the boundary conditions u = v = D u  = 0 at 
x = f 4. The coefficients in the expansion series are determined by the require- 
ment that the errors in (20) and (21) be orthogonal to the expansion functions u 
and u. This requirement reduces the equations to an infinite system of linear 



380 C. F .  Chen and R. P. Kirchner 

homogeneous algebraic equations for the coefficients in the series. In  order to 
have a non-trivial solution, it is necessary that the determinant of the system be 
zero. This requirement gives a determinantal equation for T(a,  CT, 7). 

Let u ( x )  and v(x) be expanded into the following series, 
m 4, 

~ ( x )  = C anun(x) and v(x) = C Pnvn(x), (26) 
n = l  n = l  

where 
un(z) = (x2-a)2xn-1 and v,(x) = (x2-$)xn-l (n = 1. ,2 , . . . ) .  (27) 

These complete sets of functions have been used by Kurzweg (1961), Walowit 
et al. (1964) and Tsao (1964), in the solution of several steady-state Taylor 
problems. The inner producb off(%) and g(x) is defined as 

in which the weight function g is given by (23). After substituting the M-term 
eigenfunction expansions into (20) and (21) and requiring that the errors be 
orthogonal to the expansion functions we obtain, 

$ a, (s'* 6um(DD* - a2 - r )  (DD* - a2) u, dx - pna2T 
n=l -4 

= 0, (28) 
&Am vv, ax 

(m = 1,2,  ..., ill). (29) 

With this choice of expansion functions all of the integrals can be expressed 
exactly. However, it  is more convenient to  express the integrals as linear com- 
binations of the following fundamental integrals : 

S(m, n) = xm(x2- a)ndx, s:: 

BY(m, n, 6, hi, 7) = 1 +?z xm(x2 - $)nY, (7) hi 6 ax. -* 
Here rn and n are zero or positive integers, p is a positive integer, and 6 = 0 or 1. 
The details concerning the evaluation of these integrals can be found in Kirchner 
(1968). 

The determinant for given q, u, and a is a Mth degree polynomial in T .  The 
smallest positive root over all real positive values of a is the approximate value 
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of the critical Taylor number. The determinant was evaluated using the method 
of pivotal condensation, the first zero was found using a systematic searching 
procedure and was refined using the secant method for determining a root. All 
of the computations were carried out in double precision arithmetic on an IBM- 
7040. 

Calculations have been made for M = 2 to 6 for the quasi-steady case in 
order to ascertain the nature of the convergence of the Galerkin method. Values 
of am/a6 and T,/T, are calculated for 7 = 0~10 ,0 -25 ,0~50 ,1~00 ,  10.0 and are listed 
in table 3. It can be seen that for 7 > 0.5, the 6-term approximation yields good 
results. However, for 7 < 0.5, the 6-term results are somewhat higher than the 

Ts - a 5  - T4 - a4 - T3 - a3 T2 - - aa - 
7 T6 a6 T6 a6 T6 T6 

0.100 0.417 63.2 0.544 10.3 0.699 3.14 0.864 1.46 
0-250 0-472 19.6 0.596 4.41 0.742 1.89 0.899 1.20 
0.500 0.548 7-58 0.685 2.34 0.822 1.34 0.945 1.07 
1.00 0.684 3.33 0.807 1.47 0.912 1.10 0.982 1.02 

TABLE 3. Critical Taylor number and corresponding values of a ratios for 7 = 0.10 a t  
various dimensionless times. (The subscripts denote the number of terms taken in the 
approximating series. All values are normalized using the six-term results) 

correct ones. Since the order of the determinant to be evaluated is ZM, we have 
stopped at M = 6 to avoid excessive computation time. The convergence be- 
haviour of the momentary stability case is assumed to be the same as the quasi- 
steady case. It should be pointed out that the convergence property of the 
Galerkin method is quite satisfactory when it is applied to time-dependent, 
narrow-gap Couette flows (Meister 1963), and to steady-state, wide-gap Couette 
flows (Walowit et al. 1964). It is only in the present time-dependent as well as 
wide-gap case, it fails to yield rapid convergence. In  order to achieve greater 
accuracy, more terms have to be retained in the Galerkin series with con- 
comitant increase in computer time. It may well be that a direct integration 
scheme such as used by Sparrow, Munro & Jonsson (1964) would have been a 
more suitable method for the solutions of (20) and (21). 

3.2. Results and discussion 

The values of critical Taylor number and the critical wave-number a for both 
the zero growth rate and the momentary stability criteria using the 6-term ex- 
pansion for 0.07 < 7 < 1.0 and 7 = 0.1 have been calculated. The Taylor number 
is converted into the Reynolds number by Re = 0*061419(T)* and the wave- 
number converted into the wavelength by Z/R, = 187r/a, and these are tabulated 
in table 4. The steady-state critical Reynolds number and the wavelength are 
also listed for reference. The critical wavelengths predicted using either of these 
two criteria are about the same, and they are about twice the values observed 
or calculated by the initial-value problem approach. Using the quasi-steady 
method, we obtain the waves which tend to grow first. On the other hand, with the 
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initial-value problem approach, we are able to identify that wave which has 
achieved the fastest growth rate over the entire time period considered. The 
critical wavelengths obtained by these two methods are not strictly comparable 
in view of the results obtained by Mahler et al. (1968). Using the quasi-steady 
method, they have shown that the wave which starts to grow first is not the one 
which sustains the fastest growth rate in an overall sense. We have not, however, 
carried out computations on the quasi-steady method to ascertain the growth 
rate of the perturbation at later times for the following reasons. Firstly, in view of 

Zero growth rate criterion - P 
Momentary stability criterion 

7 Re ZIR, Re ZlRI 
0.07 103.82 5.39 177.25 3.98 
0.08 90.64 5.44 147.63 4.07 
0.09 80.90 5.44 126.91 4.16 
0.10 73.41 5.49 111.75 4-25 
0.15 52.48 5.77 72.51 4-56 
0.20 42.78 6.08 58-16 4-88 
0.25 37.17 6.35 47.26 5-14 
0.30 33-47 6.65 41.66 5.34 
0.35 30-85 6.90 37.79 5.60 
0-40 28.87 7.16 34.96 5-83 
0.5 26.05 7.75 31.05 6.21 
0.6 24.11 8.20 28-43 6.65 
0.7 22.67 8-70 26.64 7.07 
0.8 21.55 9.12 25.09 7.44 
0.9 20.64 9.59 23.93 7.85 
1-0 19-90 9.92 22.96 8.20 

Steady flow 15.70 17.13 

TABLE 4. Critical Reynolds number and wavelengths of quasi-steady analysis with both 
zero growth rate criterion (a = 0) and momentary stability criterion (c + 0) for 7 = 0.1. 
Tho number of terms taken in the expansion series is 6 

the poor convergence of the Galerkin method in the present case, any results 
obtained would be qualitative at best. Secondly, it has been shown by Mahler 
et al. that the quasi-steady approach over-estimates the growth rate by quite a 
large margin over that predicted by the initial-value problem approach. This 
is due to the fact that the ever evolving density profile (or basic velocity profile 
in our case) is not accounted for using the quasi-steady approach. Although they 
disclaim any generality of their results, it is our feeling that the same inadequacy 
of the quasi-steady theory would prevail in the present case. 

The critical times for intrinsic instability using either the zero growth rate or 
the momentary stability criterion are shown in figure 5 with dashed lines and 
marked Em and Em,, respectively. It should be remarked here that at the lower 
values of 7,  the correct answers would be to  the left of these curves in view of the 
convergence results shown in table 3. These are comparable to those found in the 
initial-value problem, confirming once again the results of Mahler et al. (1968). 
However, it is doubtful that the same agreement can be obtained for any earlier 
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critical time at higher Reynolds numbers. The growth rate (r of the basic flow 
rises precipitously for 7 < 0.07 (figure 8) and bhe concept of quasi-steadiness may 
no longer be valid. 

4. Conclusions 
I n  this paper we have examined the stability of time-dependent Couette flow 

by two different methods. One is the initial-value problem approach in which 
the time evolution of the initially present small random perturbations is 
monitored. With this method we examine the final state of the flow which has 
evolved in time in order to determine whether bhe flow is stable. The other is the 
quasi-steady approach in which the stability of the instantaneous basic velocity 
profile is analyzed. In  this latter method, both the zero growth rate and the 
momentary stability criteria are examined. With the quasi-steady approach, 
we examine the state of motion at  a particular instant to determine whether the 
flow is stable with respect to small disturbances. 

The results of the initial-value problem show that the perturbation kinetic 
energy first decays, reaches a minimum, then grows exponentially. The critical 
wavelength of the fastest growing wave obtained with this method agrees closely 
with experimental observation of I and Liu (1971). It appears that when the 
perturbation kinetic energy has grown a thousand-fold, the instability disks are 
clearly observable. The time of intrinsic instability (the time at  which perturba- 
tion first tends to grow) is about & of the time required for the instability disks 
to become observable. 

The results obtained using the quasi-steady analysis show that the wave- 
lengths of the perturbations which tend to grow first are about twice as large as 
those calculated by the initial-value problem approach and as those observed 
experimentally. The critical times for intrinsic instability are comparable to 
the results of the initial-value problem for 7i > 0.07. At any earlier time, the 
concept of quasi-steadiness may no longer be valid. These results in general are 
in agreement with those found by Mahler et al. (1968) on an equivalent BBnard 
problem with suddenly applied cooling from above. Both the zero growth rate and 
the momentary Stability criteria gave approximately the same results. 
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